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Summary:

\The general equations of motion for a multicomponent chemically
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1. INTRODUCTION

In investigating the interaction between a surface and its environment,
one is concerned with an analysis of luid dynamic fields involving the
simultaneous transport of mass, momentum and energy. Such problems
are described by the equations of change which are a coupled system of
nonlinear partial differential equations, The equations of change comprise
the conservation laws for the fluid system and consist of tae conservation
of chemical species, the momentum equation and energy equation, The
global form of the conservation of mass, or continuity equation can be
obtained directly by summing over all of the equations for the conservation
of chemical species,

The presence of chemical reactions in multicomponent gaseons flow
systems greatly complicates the analytical formulation and solution of the
flow field problem. The complexity of the problem and the relatively
small effort expended in tLis area, as opposed *o the voluminous literature
and effort dealing with classical nonreacting boundary layers and inviscid
flows, have conspired to limit the current state of our knowledge concerning
this technically important clase of problems, It is therafore of considerable
interect to consider the general equations of change appropriate to a
multicomponent chemically reacting flow system, and from these to derive
the boundary layer equations which describe the phenomena in the

immediate vicinity of the surface of a body irnmersed in such a fluid,




An interesting point 1s that in the classical treatment of flow fields,
the problem is often sp.it into the solution of two problems, inviscid and
viscous, An analogous treatment for reacting fields would be to define an
" influscid" flow field as that region where gradients of velocity, tempera-
ture, pressure and species concentration are so small that transport pro-
cesses related to viscosity, thermal conductivity, thermal diffusion, pressure
and concentration diffusion may be conveniently neglected. The " fluscid
region is then the boundary layer udjacent to the body, where the afore-
mentioned gradients are so large that coupled transport processes constitute
the essential physical phenomena. It 18 noted that in the case of a
reacting flow, in addition to gradients of velocity and temperature, species
concentration gradients also appear near the body surface, due to the presence
of dissociation, combustion and other forms of chemical reaction. Conse-
quentiy, one must regard the boundary layer as a multidimensionral region,

The 1nfluscid and fluscid fieids can then be solved separately, and
matching is satisfied by taking the "inner" boundary conditions for the
influscid field as the conditions as "infimity" for the boundary layer. Thus,
in simplifying the analysis, by reducing it to the solution of two problems, a
complication is introduced in the form of interaction between the influscid
and fluscid fields, In the case of a classical non-reacting gas flow, when
the inviscid flow field is 1rrotational, the interaction appears primarily as a
displacemert effect at the wall, 1n the form of a thicker body or equivalert

bourdary layer displacement thickness. However, when the inviscid flow is
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rotatiocal, as for example, when there are entropy gradients in the field due
to curved shocks, then in addition to the displacement effect, there is an
interaction between the vorticity of the external field and the vortical
boundary layer. For the case of weal interaction, it appears that this
effect may be included in the boundary layer analysis by modifying the
boundary conditions for the velocity gradient at infinity?®.

In a reacting flow, another type of interaction comes into play in which
the concentration gradients must be made to match at the outer junction between
the fluscid and influscid solutions,. And further, one cannot now take the
surface conditions independently of the surface mass and energy balance.

Int itively, one would expect that all of these cu .pling effects could be
treated by means of an iterative approach.

In considering the flow of a reacting gas over a surface, it is not
correct in general, to treat the environment as a single gas unless at each
point the diffusion flux set up by concentration and thermal gradients, and
the convective flux set up by pressure gradiente, are exactly counterbalanced
by the influx of species by convection and the production of species by
chemical reactions, #o that a stationary equilibrium composition can be
maintained in the flow field, Hence, if exact solutions are desired, when
chemical ccmporents are free to react, expecially when a new species is
introduced into the boundary layer by means of mass transfer from the
surface, Gue to vaporization, sublimation, heterogeneous reaction, or

direct fluid injection, it appears necessary to evaluate the transport




coefficients and thermodynamic¢ prceperties including viscosity, thermal
conductivity, concentration diffusion, thermal diffusion, specific heat
and enthalpy at each point in the boundary layer as a function of the

local composition, pressure and temperature. Moreover, it is essential
that the driving forces for each species be determined by means of the
individual equations for the conservation of species, so that the extent of

surface reactions can be assessed.
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2, SYMBOLS:

Q acoustic velocity
Bi » ->-<—1- referred mole fraction of il species

m
Ci mass fraction of species i
. XiM; Ny 2;
Ci"'-ril—= 17?11: 1 1 zci"
P m e 1
CF ‘ specific heat at constant pressure, (. specific heat at constant

J >

volume

driving force

diffusion coefficient, (multicomponent system)
diffusion coefficient. (binary system)

thermal diffusion coefficient

thermodynamic internal energy per unit mass, including chemical

2

stagnation internal energy, E = @ 4+ L +r

L
2
external force acting on a unit mass of species i

static enthalpy, h = e + _P_

/J
static enthalpy of the ith species, including enthalpy of formation
hy < e+ Pi

i




enthalpy of formation of ith species

%
stagnation enthalpy, H =h+ %'U'

unit tensor

li - PiYi relative mass fiux of species i

{)i‘\;i absolute mass flux of species i

%1 = niYi relative molar flux of species i
-
K

y4
My

ﬁ = 3 Ximi tnolecular weight of the yas mixture
{

M;

coefficient of thermal conductivity

Boltzmann's constant

linear dimensicn, cm.

molecular weight of species i 3

net molar production of species i per unit volume by chemical
reaction

moles of i per unit volume
total number of moles per unit volume

number of molecules of i per unit volume




N total number of species

static pressure

VO

energy fiux vector

R universal gas constant

.. Q radius of curvature

| r, radius, measured from the centerline to the surface
‘t time
T temperature

U x component of velocity
: v y component of veldcity
‘!x absolute flow velocity of species i

=

N o= 1 2 (Jl\_{i mass - weighted average velocity of the fluid mixture
1

V; =V -\  diffusion velocity of species i

-

Wi net mass rate of production of species i per unit volume by
chemical reaction where 5{. Wi® O

Xi mole fraction of species i , Xi = N ( z Xi . |>




X, Y. L P8 coordinate system

€ ij symmetric rate of strain tensor
Ao

T viscous stress tensor

~ 1]

ordinary viscosity coefficient
a quantity related to the second viscosity coefficient

5 partial density of species i, /31 = nimi

pressure tensor

/4.

A

/3 density of the fluid mixture, /-‘ = Y\.t'ﬁ).
%

2

dissipation function

Subscripts
i ith chemical species

total

Dimensionless Groups

Pr = .C_P_/(_‘.' Prandtl Number
K
LlJ = /JETDJ‘] Lewis Number
K

T = T
Li = CP Di Thermal Lewis Number

<

B R I aliam = v ot maeri e . &

R i = e al W




3. BASIC RELATIONSHIPS
Referring to the list of symbols, we observe that the total number
of moles in a unit volume is obtained by summing over all the contributions

of each speciés, i.e.
Nt = 3 n; (1)
i

The density of the fluid is given by summation over all the partial

densities of all the species.

P.E{()i:?ni'}ni'%{aci (2)

The absolute molar flux of species i with respect to fixed spatial

coordinates is given by:
NiVvy

hence the mass flux of species i with respect to fixsd spatial coordinates is
given by:

Ji = MYy = CiVy = /’ﬂ’.’i (3)

-

We may thus obtain the mass-w eighted-average velocity of the fluid

by summing over J i
-

PY = Z ;- 21/’1‘:."1 &
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This velocity _‘\’f is the macroscopically observed stream velocity, i.e.

= _\
=3 ZL : %(’i’!: = = Zni'mi‘ﬂ‘%ci“’i %)

L
r r i

The diffusion velocity _Y1 of species i is then defined as the
difference between the absolute velocity of species i and the obsefved stream

V‘hcityo
Vi = ¥i-Y (6)

It is then possible to define the diffusion flux vector

1.« p V.
1 -l ()
8t f
Note that the mass weighted average of the diffusion velocity is zero.

This may be shown quite easily, by sumiming equation (6) over all Pi

and then introducing equations (2) and (4).

RTINS YN
(p

Consequently we may write:

| = V. =0
%1‘ %P“” (8)
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4. CONSERVATION OF SPECIES
The conservation of species 1 may be written:

g_‘%i + 9-(NVi) = My (9)

or equivalently

P T s W
5-{- + VJI 1 (10)

where the chemical source function wi represents the mass rate of
production of species 1 by chemical reaction and may be determined
only with great difficulty from chemical kiretics.

Upon sliminating ‘_\_.: i o Wwe obtain:

%Y\_E‘ + 9 [n (V) - M; (11)

9 +V
T + V- [Pl \-l

If there are N different species in the flow field, only N-1 of

(12)

these equations will be required in addition to the global continuity equation,
which follows,

Summing equation (10) over all the species, we find:

° . = N :
TR ACERE Y CLE N

Since mass i{s neither being createc nor destroyed, neglecting relativigtic

effects,

2 W, =0 (13)
!
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and the former becomes:

Eg + V(()Y) = O (14)
?

the familiar global continuity equation, Other forms may also be derived.

These are listed below for convenience.

ﬂ.’ + PV}[ =0 (15)

d¢i - w. - v.(p: V.
/)'—';' Wl. V((bl-l) 16)

where i = _D_ + V.-V \
FCY =20 + ¥ (

is the streaming derivative, Undoubtedly, we have not exhausted all the
possibilities in representing the conservation of mass.
Returning briefly to the flux with respect to the mass average velocity,

we note that the flux may be broken down into several parts, i.e,
= A (€1 T () (F)
ix‘liYi'/’i(\Yi + VL By Y 7

Here we observe that the mass flux ii contains compcnents due to gradicats
in concentration, temperature, pres:xre. and external forces, From the
thermodynamics of irreversible processes, if the situation encountered is

aot too far removed frem equilibrium, the flux must be a linear function

of the driving forces, and the nzt fiux is then the sum of the individual

contributions, Hirschfelder et al? gives:

17 PR,

i g et e e o ot = el Ak W mod

. . e ——— e
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ii = %’-Z ’m,’mJDI]é] —~ DiTVlnT

fo (18)

dy = 9X3 +(X5-¢)) olnp

- G
s [ B - EneEd]

For the case of a binary mixture in which only concentration difiusion and

(19)

thermal diffusion are significant, equation (i8) reduces to:

ji = I‘!_af My M, Qi3 V Xy - D{ vInT (20)

and it is then not difficult to show that:

T
Vi= -0 9vlng - Di olnT (@)
i
We observe that no simplifications result upen introduction of mass

fraction rather than mole fraction, when there are more than two chemical

compodaents,
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5. THE MOMENTUM EQUATION
The momentum equation in aerothermochemistry is identical with
that used in asrodynamics for gases without chemical rsactions.

f;% = v+ ZpF,y S

where ..Fi is the external force acting on a unit mass of species 1 ,

and ]I is the pressure tensor. The pressure tensor may be written:
JU -pLl + Ty (23)
where F is the static pressure and 2’11 is the viscous stress
tensor. According to equation (22), the macroscopic velocity of the fluid
undergoes a change because of the gradient in static pressure, the internal

shear and the external forces which act oz the various chemical species

present. We may write for Ilj :

Tij = 2u€y + 1NV Y (24)
where
/J- is the conventional viscosity
)\ is related to the second viscosity coefficient
L is the unit tensor
€ ij is the symmetric rate of strain tensor where a typical term is
~ given by:
| . . .

€ = (2 + M (ifeus e

such that 513 = Eji » in cartesian coordinatecs,




: wel
el R a il e M
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If it is assumed that Stokes' postulate holds which is equivalent to assuming
that we are dealing with a process whose characteristic time is much

smaller than the viscous characteristic time, then

A¥ ZM=0

(26)

and there follows:

Ty = 2m (€4 - 3 1vy) (27)
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6. THE ENERGY EQUATION

A quite general form of the energy equation, is given by:

p%% -9-Q + TWivy + ZpY (28)

This equation is formally analogous to the first law of thermodynamics,
where the internal energy @ includes chemical energy. In words,

this equation states that the internal energy of the mixture & , following
the mean motion, changes due to the combined effects of the energy flux
vector _Q. » the work of the pressure tensor "I and the work done
by the external forces _El .

The energy squation may be rewritten in many different equivalent
forms, but before we develop some of these other forms, it will be
instructive to examine the energy flux and pressure tensor work terms a
little mcre closely, The energy flux with respect to the mass average

veloaity, denoted by 9 may be broken down into its component parts, i.e.,

g (T) Q(d) + Q(C"ﬂ + g(ﬂ) . (29)

which represent contributions due to temperature gradients, diffusion,
concentration gradients and radiation, If the effects of radiation can be

separated out, the remaining terms are?:

,
Q= -kvT+ZpVin - B33 02 (v,

- 1 jrt ml 1] (30)
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The name Fourier is associated with the first term on the right
hand side, while the third term is related to the Dufour effect. The
(®) : ,
radiative flux Q depends in a detailed manner on the frequency
-l
and intensity of the radiation and on the fluid properties, One
procedure that may be used at present is to evaluate this term after
having solved the flow field. Obviously, such a procedure is approximately

valid only if \Q(R)\ L& ‘Q \ .

The work done by the pressure tensor is given by:

T:vy = -pPVY+ @ (31)
where @  , the dissipation function is given by:
2= Ty:Vy
SRR T e

upon having introduced equation (24),

For example, in x, y, z coordinates:

L (5 ()
Y. :- ( 24 L our )')' o (l\f + U ?'.\ (33)

o N PR ‘m,)

<
r—
-~
O

IS
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Satting A= "L/* and rearranging, the dissipation function becomes:
® "'/‘[ N az
PR (5 5) (:—‘M,H .

(aur .\ au w-)]
32 X ‘ax D_y

If Stokes' postulate holds, ® 2O . Thatis, P is essentially
a positive quantity that vanishes only when the fluid motion consists of a
pure dilation. The physical meaning is that viscosity is a method of
adding internal energy to the fluid at the ex) ense of other forms of energy.
For a non-8tokesian fluid, consisting of complex molecules, it is
poasible for § <O ,

Introducing equations (30) and (31) into the energy equation, the

iatter becomes:

pé_e_- = -PYY + @ + V(KVT) - v- 2 pYih,

RT Dy : (35)
+ v-SL3Y N (v -vy) ¢ 2 VE
Ng Ty ?ﬂiee‘ij( Yy -Ya) + 3 Puts

The energy equation may also be written in terms of the enthalpy.

Taking
e «h-2F (36)
ﬁ
countion (33) becomes:
dh V-Q + ¢+d '
e = - V- + V.o (37
P dt - a% iZ/)‘ -‘1 >4

T e G e
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oroxpmded
ah - + d
pdh Wo (koT) -v-Zp Vi + 2 d!;
v RT njD; (38)
Ty ?J};ﬁ My MRARE TN

If we consider that the gaseous system is composed of a mixture of reacting

perfect gases, then the caloric equation is simply:

CV = (?—S.’.') e, =

' oT Jv : ei(T)
- (39)
Cy » ;th% c- %Ciei

and hence upon utilizing equation (10), the energy equation may be written:

{JC dT « -V Q + IF:V}I + ?PiYi'Fi

, (40)
B zieiwi * 2;-: SYRATAYY
which may be expanded into the form:
rE — = - pVY + 3 + (k9T - 7 2 pVihy
’Tse UD (y,-v) + 2V,
m; i 4m miﬂij -

Doy + e (vp)
i i
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We can also obtain a similar result in terms of the enthalpy.

We take:

Cl’t e ("%‘_%—)P hi = "\;(T)
(42)

Cp = 2, ¢4Cpy h Zcih

and there follows immediately:

PCh 3.:{ = V-(k9T) - S CpipiVy VT + B

+ d . RT n; Dy’

d Ve 22 P (Y]--Yi) (43)

Ng 1 jui mi'e'ij
'z;-"‘iwi v zi-PiYi'fi

It should be noted that while e and h contain the chemical er srgy
of formation, they doa't include either the kinetic energy of the macroscopic
motion of the gas, or the potential energy associated with the external
forces F {

L )

If wa wish to include the kinetic energy, we may do so as follows.

Premultiply the momentum equation by X - and there is obtained:

PL-d « g (v T+ TpTEe

(44)
- d T
f&(z"I)
Define
E=e+2vut
H = b ap 2 (45)
"i'u

h"'*'\)‘"’- e+ P+
p

o e S A 1 T 4T

P-4

PR M T 7 ey g et et | M s st st
A o — e ) oo o6 o 3
A

!
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and then we may write the general expressions:

Pj‘% = -7 Q + v (T-¥) + Zpy o Fy (46)
where
V‘(TI"-I) = MW:vy + v (v.T) (47)
Also,
p%% = 7.(KvT) - V'zi"/’i\-fihi + &+ 2p
ot (48)

+ (9 Ty) + 0. RIss mDi' ) o
] N ?j%i miﬂq\y] 'YI)

We have obviously not exhausted all of the possibilities for representing

the energy equation,
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7. THE EQUATION OF STATE

A reasonable approximation to the thermsal bebhavior of the gaseous

mixture. is the assumption that the equation of state is given by:

PrpRT
where R=* r

There also follows:

R= %ZP‘Ri - ZC;R{ = R’J -ﬁ-

= | - .M. = \
m = F‘-t %nimi = ?X; M1 —Z
i

J|°

Some other useful forms of equation (49) are:
Pi= piReT
P * Y\*'WL RT = NRT

Pee NAT

After s sfficient number of solutions have been obtained in a

given type of prodblem. utilising perfect gas behavior, then it would be

woll to reconsidor the effect of non-ideal thermal equations,

(49)

(50)

(51)

[Rpsm—
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8. THE INFLUSCID EQUATIONS

Up to this point, all of the equtions have been rather general.
Let us now obtain the influscid equations by neglecting all transport phenomena.
That is, diffusion, viscosity and thermal conductivity are eliminated
from further consideration in the inviscid flow field and there follows
accordingly:

Conservation of species i
I& (.1_c_1. = Wy (52)
Global Continuity

it
+ 7 (py) =O© (s
At i )

Momentum Equation
P ..d..g = -V + 2 F (54)
Tt P e Piet

Energy Equation

/D ) cl

PdH EE A Z pyFy

ot

(55)

which shows that only in the steady state is the stagnation enthalpy
constant when follewing the macroscopic motion of the gas, (neglecting

external forces),
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In the solution of the influscid equations, further difficulties are
introduced ‘when one attempts to satisfy the boundary conditions, This
situation very clearly exists in a hypersonic flow field since the
goveraning partial differential equations are of mixed type. We will reserve
our discussion until later. Let us now proceed to the boundary layer

equations.

——
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9. THE BOUNDARY LAYER EQUATIONS

The first thing we must take cognisance of is that the boundary
layer approximation is not invariant with the coordinate system. Stated
another way, the form of the boundary layer equations together with their
boundary conditions actually depend on the choice of the coordinate system
to such an extent that diffsrent results may actually be obtained for the
same physical body when different coordinate systems are utilized’. Thus,
for example, if the boundary layer approximation is made with respect
to the coordinate system sketched in figure !, the boundary layer equations
for a reacting multicomponent mixture can be formulated as follows.

The conservation of species i may be written;

P b 9. [Py VO] = Wy (56)
ot i

where the general form of the molar diffusion flux is given by eq. (18)

L
$i=nVi= 2L 3 mDydy - Di ¢gInT (57)
- P o M

and the driving force é j may be written:
éj = Xy + (Xy = ¢3) vinp (58)

{f external forces are neglected, The Dl] are the multicomponent
diffusion coefficients, of which there are NI—N where N is the

aumber of species, and the Xj are the mole fractions.
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Defining a referred mole fraction Bi = Xi / 9”7\. the

diffusion equation may be written:

dB; . ¢. - M. (59)
"® dt _’?. '

On introd :cing e3s. (57) and (58), eq. (59) becomes:
dB P .
P i 4+9- {12‘51 (_mijj{VxJ +(X] C]\ V]n?n "t } = Mj (60)

When the boundary layer approximation is made with respect to a

body-oriented axially-symmetric coordinate system, the diffusion equation

becomes:

B; R AV RS N-Li 3TN
P(?ﬂ} a: VN 9) y[Pr{,Zu ﬁ{*LJaay BJ)%}%,H Mcen)

The energy equation may be written:

(’EP—- a iﬁ + B+ V-(KVT\ - ? CPifiy-i'VT” 211 hyw, (62)

where the Dufour effect has been neglected and the following notation has

been introduced,
o} T
t a - ah e R
hy = ahy + So cpdT5 Cpy (__) ) & Zc Cpy (87)

On making the boundary layer 2pproximation there is obtained:

Pa (T ud 3= BauD, u )+ 3 (x3)

ot X °J
(64)

- ZepM 44 (s My s L; o7
v Prij" ol aﬁ(mj) fmﬂﬂaﬂ z MM

i

-

gt

I3 110 b o NN 5 YTV T
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It is again noted that equation (62) merely represents one of several
convenient forms.since the energy equation can be written in many

equivalent forms., Global continuity becomes:

;tf + %((our,) - %(/)vr.) =0 (65)

Finally upon neglecting external forces the momentum equation yields the
following x and y scalar equations:

4+ w2t pqrU) = - Op U
P( ot oX a\)) 3x +%(/u aj) (66)

PN -UY = -2
wtn 59 (67)
The behavior of the above equations, under the influence of suitable
constraints, forms the basis for studies of the interaction between a
surface and a reacting stream,

It is noted that under certain circumstances, it may be permissible
to lump the gaseous components whese thermal and chemical behavior is
similar so that although the gas is actually a multicomponent mixture, its
behavior may be approximated by a binary mixture., Further, in formulating
the governing equations for a two-component chemically reacting boundary
layer, it may be convenient to utilize mass fractions rather than mole
fractions in representing the composition of the gas.

For a binary mixture wc can introduce eq, (21) so that the diffusion
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and energy equations become respectively:

C
PLR v - W’*’i"é‘”’*i@) wo

E 3T+uaT+vaT ) u P
/) P( ax ay) B_E + a +

+ 3 [enlpay 9691+D, oTy] 2T

- D" j i

while the global continuity and momentum equations remain unchanged. Here
again, all possible forms of the energy equation have not been exhausted.

For example, another useful form is obtained from eq. (38)

PR AR = B wum oy

+3B) g 3r

Note that the Dufour effect and all external forces have been taken

(70)

negligible above,

We have also assumed that we have a sufficient number of auxiliary
relations for the determination of the transport properties of the gaseous
mixture. For example, to a good approximation the viscosity of a mixture

in terins of the viscosities of the pure components, the binary diffusion

coefficients and the rnole fractions is given by*:

s £

/ii KjAd Pr?a Q[ZK (71)

baiatf Gl o n S
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10. BOUNDARY CONDITIONS

The unknown dependent variables in a reacting flow field are the
three velocity components, (this reduces to two. for axially symmetric
flow), the pressure, the temperature and the composition. Once these have
been determined, the problem ruay be considered solved. Thus, in
general, the mathematical problem consists of solving for N + 5 unknowns,
where N is the total number of chemical species. To accomplish this
end, we have at our disposal the following system of equations, N + 5
in totals

N -1 conservation cf species

1 global continuity

3 momentum equations
1 energy
1 state

In addition, we must aleo provide a set of boundary conditions
which is in agreement with the overall order of the mathematical system,
Examination shows that the order of the system and hence its mathematical
character depends on whether the flow field is fluscid or influscid. In
general, when the flow field is influscid, the system is of the N + 4th order,
however, when the flow is fluscid, the overall order of the system is 2N + 7,
and hence the fluscid system requires N + 3 more boundary conditione
thzn the influscid flow system, in order to properly define the

ma‘hematical problem.,
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The relevant boundary conditions or compatibility relations for
a rsacting boundary layer must be developed individually for each problemn,
It is remarked that the difficulty at the surface usually lies in the coupled
mass-snergy transport, Typical treatmentis of the surface boundary conditions
for a reacting boundary layer appear in references 4 and 5, The boundary
conditione at the outer edge of the boundary layer must be obtained from
the influscid solution. It is therefore of the greatest importance that
solutions be obtained for the non-equilibrium influscid flow field, since
unless one knows the conditions at the outer edge of the boundary layer,

one cannot predict the state of affaire inside the fluscid Jayer.
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1. CONCLUSIONS
Our major interest here has been in formulating the boundary
layer equations and not in determining heat and mass transfer which will

be considered elsewhere.

From ’n{- brief discussion, it is clear that the analytical treatment
of flow tieds in which chemical reactions are present requires a major
effop( with regard to the solution of the governing equations, subject to the

/.‘/"appropriate boundary conditions.
\ ) yd While general techniques for obtaining closed forn: solutions of
/ the partial differential equations are desirable, the advent of high speed
digital and analog computers has made it more likely that particular
numerical solutions will be obtained, and hence it is anticipated that
experiments will have to be carefully designed to detect the effects which

can be treated theoretically,
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SCHEMATIC OF INFLUSCID FLOW FIELD IN
HYPERSONIC FLOW
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SCHEMATIC OF STAGNATION POINT BOUNDARY

LAYER
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